On isomorphisms of pseudo-Euclidean spaces with signature (p,n − p) for p = 2,3

As is well known, for every orthogonal transformation of the Euclidean space there exists an orthogonal basis such that the matrix of the transformation is block-diagonal with first order blocks ±1 and second order blocks that are rotations of the Euclidean plane. There exists a natural generalization of this theorem for Lorentz transformations of pseudo-Euclidean spaces with signature (1,n−1). In addition to invariant subspaces appearing in the Euclidean case, Lorentz transformations can have invariant subspaces of two new types: invariant plane with the Lorenz rotation and 3-dimensional cyclic subspace with isotropic eigenvector and eigenvalue ±1. In this paper, we present similar results about the structure of isomorphisms of pseudo-Euclidean spaces with signature (p,n−p) for p=2,3. © 2017 Elsevier Inc.

Авторы
Pavlova N.G. 1 , Remizov A.O.2
Издательство
Elsevier Inc.
Язык
Английский
Страницы
60-80
Статус
Опубликовано
Том
541
Год
2018
Организации
  • 1 RUDN University, Moscow, Russian Federation
  • 2 CMAP, Ecole Polytechnique, Palaiseau, France
Ключевые слова
Cyclic spaces; Decomposition; Eigenvectors; Indefinite metrics; Jordan form; Linear transformations; Pseudo-Euclidean vector spaces
Цитировать
Поделиться

Другие записи