Periodic Trajectories and Coincidence Points of Tuples of Set-Valued Maps

A fixed-point theorem is proved for a finite composition of set-valued Lipschitz maps such that the product of their Lipschitz constants is less than 1. The notion of a Lipschitz tuple of (finitely many) set-valued maps is introduced; it is proved that such a tuple has a periodic trajectory, which determines a fixed point of the given composition of set-valued Lipschitz maps. This result is applied to study the coincidence points of a pair of tuples (Lipschitz and covering). © 2018, Springer Science+Business Media, LLC, part of Springer Nature.

Авторы
Номер выпуска
2
Язык
Английский
Страницы
139-143
Статус
Опубликовано
Том
52
Год
2018
Организации
  • 1 Voronezh State University, Voronezh, Russian Federation
  • 2 RUDN University, Moscow, Russian Federation
Ключевые слова
fixed point; Hausdorff metric; Lipschitz set-valued map; set-valued map; surjective operator
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/6731/
Поделиться

Другие записи