Local Attractors of Newton-Type Methods for Constrained Equations and Complementarity Problems with Nonisolated Solutions

For constrained equations with nonisolated solutions, we show that if the equation mapping is 2-regular at a given solution with respect to a direction in the null space of the Jacobian, and this direction is interior feasible, then there is an associated domain of starting points from which a family of Newton-type methods is well defined and necessarily converges to this specific solution (despite degeneracy, and despite that there are other solutions nearby). We note that unlike the common settings of convergence analyses, our assumptions subsume that a local Lipschitzian error bound does not hold for the solution in question. Our results apply to constrained and projected variants of the Gauss–Newton, Levenberg–Marquardt, and LP-Newton methods. Applications to smooth and piecewise smooth reformulations of complementarity problems are also discussed. © 2018 Springer Science+Business Media, LLC, part of Springer Nature

Авторы
Fischer A.1 , Izmailov A.F. 2, 3 , Solodov M.V.4
Издательство
Kluwer Academic Publishers-Plenum Publishers
Язык
Английский
Страницы
1-30
Статус
Опубликовано
Год
2018
Организации
  • 1 Faculty of Mathematics, Technische Universität Dresden, Dresden, 01062, Germany
  • 2 VMK Faculty, OR Department, Lomonosov Moscow State University, MSU, Uchebniy Korpus 2, Leninskiye Gory, Moscow, 119991, Russian Federation
  • 3 RUDN University, Miklukho-Maklaya Str. 6, Moscow, 117198, Russian Federation
  • 4 IMPA – Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110, Jardim Botânico, Rio de Janeiro, RJ 22460-320, Brazil
Ключевые слова
2-Regularity; Complementarity problem; Constrained equation; Levenberg–Marquardt method; LP-Newton method; Newton-type method; Nonisolated solution; Piecewise Newton method
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/6655/
Поделиться

Другие записи