The hardy and heisenberg inequalities in morrey spaces

We use the Morrey norm estimate for the imaginary power of the Laplacian to prove an interpolation inequality for the fractional power of the Laplacian on Morrey spaces. We then prove a Hardy-type inequality and use it together with the interpolation inequality to obtain a Heisenberg-type inequality in Morrey spaces. © 2018 Australian Mathematical Publishing Association Inc.

Авторы
Gunawan H.1 , Hakim D.I.2 , Nakai E.3 , Sawano Y. 2, 4
Издательство
Cambridge University Press
Номер выпуска
3
Язык
Английский
Страницы
480-491
Статус
Опубликовано
Том
97
Год
2018
Организации
  • 1 Department of Mathematics, Bandung Institute of Technology, Bandung, 40132, Indonesia
  • 2 Department of Mathematics and Information Sciences, Tokyo Metropolitan University, 1-1 Minami Ohsawa, Hachioji, Tokyo, 192-0397, Japan
  • 3 Department of Mathematics, Ibaraki University, Mito, Ibaraki, 310-8512, Japan
  • 4 RDUN, Peoples' Friendship University of Russia, Miklukho-Maklaya str. 6, Moscow, 117198, Russian Federation
Ключевые слова
fractional power of Laplace operators; Hardy's inequality; Heisenberg's inequality; imaginary power of Laplace operators; interpolation inequality; Morrey spaces
Цитировать
Поделиться

Другие записи

Lyadov A.S., Maksimova Y.M., Shakhmatova A.S., Kirillov V.V., Parenago O.P.
Russian Journal of Applied Chemistry. Pleiades Publishing. Том 91. 2018. С. 885-894