Forthcoming 5G New Radio (NR) systems will be asked to handle a huge number of devices accessing or delivering "resource-hungry" and high-quality services. In view of this, the new 5G Radio Access Technology (RAT) aims to support, in next releases, Multimedia Broadcast/Multicast Service Single Frequency Network (MBSFN) to enable the simultaneous delivery of the same content to a set of users covered by different cells. According to MBSFN, all cells belonging to the same MBSFN Area are synchronized in time and the MBSFN transmission occurs over the same radio resources. In such a way, the same content flow is delivered by several cells to all the receivers in the MBSFN Area. A further means to enhance the network coverage and provide high data rate and low latency in future 5G-enabled MBSFN networks is Device-to-Device (D2D) connectivity. Along these lines, in this paper we propose a D2D-aided MBSFN Area Formation (D2D-MAF) algorithm to dynamically create MBSFN Areas with the aim to improve the system aggregate data rate while satisfying all user requests. The proposed D2D-MAF foresees that users could receive the service through either MBSFN, or D2D, or unicast transmissions. Performance evaluation results, carried out under a wide range of conditions, testify to the high effectiveness of the proposed algorithm.