THE ANISOTROPIC INTEGRABILITY LOGARITHMIC REGULARITY CRITERION FOR THE 3D MHD EQUATIONS

This study is devoted to investigating the regularity criterion of the 3D MHD equations in terms of pressure in the framework of anisotropic Lebesgue spaces. The result shows that if a weak solution (u, b) satisfies (1) integral(T)(0) parallel to parallel to partial derivative(3)pi(.,t)parallel to L-x3(gamma)parallel to L-x1 x2 alpha(q)/1+ ln (e + parallel to pi(., t)parallel to(L22) dt < infinity, where 1/gamma+2/q+2/alpha = lambda is an element of [2,3) and 3/lambda <= gamma <= alpha < 1/lambda-2, then (u, b) is regular at t = T, which improve the previous results on the MHD equations

Авторы
Alghamdi A.M.1 , Gala S.2, 3 , Qian C.Y.4 , Ragusa M.A. 3, 5
Номер выпуска
1
Язык
Английский
Страницы
183-193
Статус
Опубликовано
Том
28
Год
2020
Организации
  • 1 Umm Alqura Univ, Fac Appl Sci, Dept Math Sci, POB 14035, Mecca 21955, Saudi Arabia
  • 2 ENS Mostaganem, Dept Math, Box 227, Mostaganem 27000, Algeria
  • 3 Univ Catania, Dipartimento Matemat & Informat, Viale A Doria 6, I-95125 Catania, Italy
  • 4 Zhejiang Normal Univ, Dept Math, Jinhua, Zhejiang, Peoples R China
  • 5 RUDN Univ, 6 Miklukho Maklay St, Moscow 117198, Russia
Ключевые слова
MHD equations; regularity criterion; anisotropic Lebesgue spaces; a priori estimates
Дата создания
02.11.2020
Дата изменения
02.11.2020
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/65952/
Поделиться

Другие записи