Multidimensional fourier transforms on an Amalgam type space

Generalizing the known results on the Fourier transforms on an amalgam type space, we introduce a multidimensional analogue of such a space, a subspace of L1(Rn+): Integrability results for the Fourier transforms are obtained provided that certain derivatives of the transformed function are in that space. As an application, we obtain conditions for the integrability of multiple trigonometric series. © 2019 The L.N. Gumilyov Eurasian National University.

Авторы
Издательство
Eurasian Mathematical Journal
Номер выпуска
4
Язык
Английский
Страницы
63-74
Статус
Опубликовано
Том
10
Год
2019
Организации
  • 1 Department of Mathematics, Bar-Ilan University, Ramat-Gan, 52900, Israel
  • 2 S.M. Nikol'skii Mathematical Institute, RUDN University, 6 Miklukho-Maklay St, Moscow, 117198, Russian Federation
Ключевые слова
Amalgam space; Bounded variation; Fourier transform; Integrability; Trigonometric series; Young inequality
Цитировать
Поделиться

Другие записи

Deryabin P.G., Garaev T.M., Finogenova M.P., Odnovorov A.I.
Вопросы вирусологии. Том 64. 2019. С. 268-273