Maximum principle and its application for the nonlinear time-fractional diffusion equations with Cauchy-Dirichlet conditions

In this paper, a maximum principle for the one-dimensional sub-diffusion equation with Atangana–Baleanu fractional derivative is formulated and proved. The proof of the maximum principle is based on an extremum principle for the Atangana–Baleanu fractional derivative that is given in the paper, too. The maximum principle is then applied to show that the initial–boundary-value problem for the linear and nonlinear time-fractional diffusion equations possesses at most one classical solution and this solution continuously depends on the initial and boundary conditions. © 2018 Elsevier Ltd

Авторы
Borikhanov M.1 , Kirane M. 2, 3, 4 , Torebek B.T.1, 5
Издательство
Elsevier Ltd
Язык
Английский
Страницы
14-20
Статус
Опубликовано
Том
81
Год
2018
Организации
  • 1 Al–Farabi Kazakh National University, Al–Farabi ave. 71, Almaty, 050040, Kazakhstan
  • 2 Faculté des Sciences, Pole Sciences et Technologies, Université de La Rochelle, Avenue M. Crepeau, La Rochelle Cedex, 17042, France
  • 3 NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
  • 4 RUDN University, 6 Miklukho-Maklay St, Moscow, 117198, Russian Federation
  • 5 Institute of Mathematics and Mathematical Modeling, 125 Pushkin str., Almaty, 050010, Kazakhstan
Ключевые слова
Atangana–Baleanu derivative; Fractional differential equation; Maximum principle; Nonlinear problem; Riemann–Liouville derivative; Sub-diffusion equation
Цитировать
Поделиться

Другие записи