Generalizations of Ostrowski type inequalities via Hermite polynomials

We present new generalizations of the weighted Montgomery identity constructed by using the Hermite interpolating polynomial. The obtained identities are used to establish new generalizations of weighted Ostrowski type inequalities for differentiable functions of class Cn. Also, we consider new bounds for the remainder of the obtained identities by using the Chebyshev functional and certain Grüss type inequalities for this functional. By applying those results we derive inequalities for the class of n-convex functions. © 2020, The Author(s).

Авторы
Kvesić L.1 , Pečarić J. 2 , Ribičić Penava M.3
Издательство
Springer International Publishing
Номер выпуска
1
Язык
Английский
Статус
Опубликовано
Номер
176
Том
2020
Год
2020
Организации
  • 1 Faculty of Science and Education, University of Mostar, Matice hrvatske bb, Mostar, 88000, Bosnia and Herzegovina
  • 2 RUDN University, Miklukho-Maklaya str. 6, Moscow, 117198, Russian Federation
  • 3 Department of Mathematics, University of Osijek, Trg Ljudevita Gaja 6, Osijek, 31000, Croatia
Ключевые слова
Grüss inequality; Hermite polynomials; Montgomery identity; Ostrowski type inequality
Дата создания
02.11.2020
Дата изменения
02.11.2020
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/65394/
Поделиться

Другие записи