Majorization inequalities via Green functions and Fink’s identity with applications to Shannon entropy

This paper is devoted to obtain generalized results related to majorization-type inequalities by using well-known Fink’s identity and new types of Green functions, introduced by Mehmood et al. (J. Inequal. Appl. 2017:108, 2017). We give a generalized majorization theorem for the class of n-convex functions. We utilize the Csiszár f-divergence and generalized majorization-type inequalities in providing the corresponding generalizations. As an application, we present the obtained results in terms of Shannon entropy and Kullback–Leibler distance. © 2020, The Author(s).

Авторы
Siddique N.1 , Imran M.1 , Khan K.A.2 , Pečarić J. 3
Издательство
Springer International Publishing
Номер выпуска
1
Язык
Английский
Статус
Опубликовано
Номер
192
Том
2020
Год
2020
Организации
  • 1 Department of Mathematics, Government College University, Faisalabad, 38000, Pakistan
  • 2 Department of Mathematics, University of Sargodha, Sargodha, 40100, Pakistan
  • 3 Rudn University, Moscow, Russian Federation
Ключевые слова
Csiszár f-divergence; Fink’s identity; Kullback–Leibler divergence; Majorization inequailty; n-convex functions; New Green functions; Shannon entropy; Čebyšev functional
Цитировать
Поделиться

Другие записи