The paper is devoted to a reaction-diffusion problem describing diffusion and consumption of nutrients in a biological tissue consisting of small cells periodically arranged in an extracellular matrix. Cells consume nutrients with a rate proportional to cell area and to nutrient concentration. The dependence on the nutrient concentration can be linear or nonlinear. The cells are modeled by a potential approximating the Dirac’s delta-function. The potential has a periodically distributed support of small measure. The problem contains two small parameters: the diameter of a cell and the distance between the cells (in comparison with the characteristic macroscopic size). In the multi-dimensional formulation assuming some restriction on the relation of parameters, we prove convergence of solution of this problem to the solution of a limiting homogenized problem. We show that the problem is non-homogenizable in classical sense if this restriction fails. © 2020, Springer Nature Switzerland AG.