Bounds for markovian queues with possible catastrophes

We consider a general Markovian queueing model with possible catastrophes and obtain new and sharp bounds on the rate of convergence. Some special classes of such models are studied in details, namely, (a) the queueing system with S servers, batch arrivals and possible catastrophes and (b) the queueing model with "attracted" customers and possible catastrophes. A numerical example illustrates the calculations. Our approach can be used in modeling information flows related to high-performance computing. © ECMS Zita Zoltay Paprika, Péter Horák, Kata Váradi,Péter Tamás Zwierczyk, Ágnes Vidovics-Dancs, János Péter Rádics (Editors).

Авторы
Zeifman A.1, 2 , Korotysheva A.1 , Satin Y.1 , Kiseleva K. 3 , Korolev V.2, 4, 5 , Shorgin S.6
Сборник материалов конференции
Издательство
European Council for Modelling and Simulation
Язык
Английский
Страницы
628-634
Статус
Опубликовано
Год
2017
Организации
  • 1 Vologda State University, Vologda, Russian Federation
  • 2 IPI FRC CSC RAS, ISEDT RAS, Moscow, Russian Federation
  • 3 RUDN University, Moscow, Russian Federation
  • 4 Moscow State University, Moscow, Russian Federation
  • 5 Hangzhou Dianzi University, Hangzhou, China
  • 6 Institute of Informatics Problems of the FRC CSC RAS, Moscow, Russian Federation
Ключевые слова
Bounds on the rate of convergence; Inhomogeneous birth-death processes; Queueing models
Цитировать
Поделиться

Другие записи