Sir distribution in D2D environment with non-stationary mobility of users

Fifth generation (5G) cellular systems are expected to rely on the set of advanced networking techniques to further enhance the spatial frequency reuse. Device-todevice (D2D) communications is one of them allowing users to establish opportunitic direct connections. The use of direct communications is primarily determined by the signal-to-interference ratio (SIR). However, depending on the users movement, the SIR of an ative connection is expected to drastically fluctuate. In this work we develop an analytical framework allowing to predict the channel quality between two moving entities in a filed of moving interfering stations. Assuming users movement driven by Fokker-Planck equation we obtain the empirical probability density function of SIR. The proposed methodology can be used to solve problems in the area of stochastic control of D2D communications in cellular networks. © ECMS Zita Zoltay Paprika, Péter Horák, Kata Váradi,Péter Tamás Zwierczyk, Ágnes Vidovics-Dancs, János Péter Rádics (Editors).

Авторы
Fedorov S. 1 , Orlov Y. 1, 2 , Samuylov A. 2, 3 , Moltchanov D. 2, 3 , Gaidamaka Y. 2, 4 , Samouylov K. 2, 4 , Shorgin S.4
Сборник материалов конференции
Издательство
European Council for Modelling and Simulation
Язык
Английский
Страницы
720-725
Статус
Опубликовано
Год
2017
Организации
  • 1 Deparment of Kinetic Equations, Keldysh Institute of Applied Mathematics, Miusskaya Sq. 4, Moscow, 125047, Russian Federation
  • 2 Department of Applied Probability and Informatics, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St 6, Moscow, 117198, Russian Federation
  • 3 Department of Electronics and Communications Engineering, Tampere University of Technology, Korkeakoulunkatu 10, Tampere, 33720, Finland
  • 4 Institute of Informatics Problems, Federal Control of the Russian Academy of Sciences, Vavilova st. 44-2, Moscow, 119333, Russian Federation
Ключевые слова
Cellular networks; D2D communications; Fokker-Planck equation; SIR distribution; Stochastic modeling
Дата создания
19.10.2018
Дата изменения
20.02.2021
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/6303/
Поделиться

Другие записи