Narrow orthogonally additive operators in lattice-normed spaces

We consider a new class of narrow orthogonally additive operators in lattice-normed spaces and prove the narrowness of every C-compact norm-laterally-continuous orthogonally additive operator from a Banach–Kantorovich space V into a Banach space Y. Furthermore, every dominated Urysohn operator from V into a Banach sequence lattice Y is also narrow. We establish that the order narrowness of a dominated Urysohn operator from a Banach–Kantorovich space V into a Banach space with mixed norm W implies the order narrowness of the least dominant of the operator. © 2017, Pleiades Publishing, Ltd.

Авторы
Pliev M.A. 1, 2 , Fang X.3
Номер выпуска
1
Язык
Английский
Страницы
134-141
Статус
Опубликовано
Том
58
Год
2017
Организации
  • 1 Southern Mathematical Institute, Vladikavkaz, Russian Federation
  • 2 Peoples’ Friendship University of Russia, Moscow, Russian Federation
  • 3 Tongji University, Shanghai, China
Ключевые слова
Banach lattice; dominated Urysohn operator; lattice-normed space; narrow operator; orthogonally additive operator; vector lattice
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/6257/
Поделиться

Другие записи