Metrics ρ, quasimetrics ρs and PSEUDOMETRICS inf ρs

Abstract. Let ρ be a metric on a space X and let s≥1. The function ρs(a, b) = ρ(a, b)s is a quasimetric (it need not satisfy the triangle inequality). The function inf ρss(a, b) defined by the condition inf ρs(a, b) = inf(σn 0ρs(zi, zi+1) z0 = a, zn = b) is a pseudometric (i.e., satisfies the triangle inequality but can be degenerate). We show how this degeneracy can be connected with the Hausdorff dimension of the space (X,ρ). We also give some examples showing how the topology of the space (X, infρs) can change as s changes. © 2017 American Mathematical Society.

Авторы
Storozhuk K.V. 1, 2, 3
Издательство
American Mathematical Society
Номер выпуска
10
Язык
Английский
Страницы
264-272
Статус
Опубликовано
Том
21
Год
2017
Организации
  • 1 Sobolev Institute of Mathematics, 4 Koptyug Avenue, Novosibirsk, 630090, Russian Federation
  • 2 Novosibirsk State University, 2, Pirogova Street, Novosibirsk, 630090, Russian Federation
  • 3 RUDN University, 6 Miklukho-Makiaya st, Moscow, 117198, Russian Federation
Цитировать

Другие записи