Parametric basis functions for collective nuclear models

We consider calculation schemes in the framework of the Kantorovich method ? reduction of a elliptic boundary-value problem to a system of second order ordinary differential equations (ODEs) using the surface functions depending on the ODEs-independent variable as a parameter. We propose construction of the new parametric surface basis functions in an analytical form for solving the boundary-value problem of a quadrupole vibration collective nuclear model.

Авторы
Gusev A.A.1 , Vinitsky S.I. 1, 2 , Góźdź A.3 , Dobrowolski A.3
Номер выпуска
1
Язык
Английский
Страницы
99-105
Статус
Опубликовано
Том
10
Год
2017
Организации
  • 1 Joint Institute for Nuclear Research, Dubna, Russian Federation
  • 2 RUDN University, 6 Miklukho-Maklaya st., Moscow, 117198, Russian Federation
  • 3 Institute of Physics, Maria Curie Skłodowska University, Lublin, Poland
Ключевые слова
Boundary value problems; Differential equations; Functions; Vibration analysis; Analytical forms; Calculation scheme; Elliptic boundary value problem; Independent variables; Kantorovich method; Parametric surfaces; Second-order ordinary differential equations; Surface functions; Ordinary differential equations
Цитировать
Поделиться

Другие записи

Vodyanova M.A., Kriatov I.A., Donerian L.G., Evseeva I.S., Ushakov D.I., Sbitnev A.V., Kiryakova N.A., Antropova N.S., Pyrkin V.O., Tsapkova N.N., Bashirov E.V.
Гигиена и санитария. Izdatel'stvo Meditsina. Том 96. 2017. С. 1091-1096