Device-to-device (D2D) communications is expected to become an integral part of the future 5G cellular systems. The connectivity performance of D2D sessions is heavily affected by the dynamic changes in the signal-to-interference ratio (SIR) caused by random movement of communicating pairs over a certain bounded area of interest. In this paper, taking into account the recent findings on the movement of users over a landscape, we characterize the probability density function (pdf) of SIR under stochastic motion of communicating D2D pairs on planar fractals. We demonstarte that the pdf of SIR depends on the fractal dimension and the spatial density of trajectories. The proposed model can be further used to investigate timedependent user-centric performance metrics including the link data rate and the outage time. © ECMS Zita Zoltay Paprika, Péter Horák, Kata Váradi,Péter Tamás Zwierczyk, Ágnes Vidovics-Dancs, János Péter Rádics (Editors).