Symbolic-Numerical Algorithm for Large Scale Calculations the Orthonormal SU(3) BM Basis

In this paper we proposed a new symbolic, non-standard recursive and fast orthonormalization procedure of linearly independent vectors but as in other approaches not orthonormal based on the Gram-Schmidt orthonormalization algorithm. Our adaptation of the Gram-Schmidt orthonormalization procedure provide simple analytic formulas for the SU(3) Bargmann-Moshinsky basis orthonormalization coefficients and do not involve any square root operation on the expressions coming from the previous iterative computation steps. This distinct features of the proposed orthonormalization algorithm may make the large scale symbolic calculations feasible. We demonstrate efficiency of our procedure by benchmark large-scale calculations of the non-canonical BM basis with the highest weight vectors of SO(3) irreducible representations.

Авторы
Deveikis A.1 , Gusev A.A. 2 , Gerdt V.P. 2 , Vinitsky S.I. 2, 3 , Góźdź A. 4 , Pȩdrak A. 5 , Burdik Č.6
Язык
Английский
Страницы
91-106
Статус
Опубликовано
Том
11661 LNCS
Год
2019
Организации
  • 1 Department of Applied Informatics|Vytautas Magnus University
  • 2 Joint Institute for Nuclear Research
  • 3 RUDN University
  • 4 Institute of Physics|Maria Curie-Skłodowska University
  • 5 National Centre for Nuclear Research
  • 6 Department of Mathematics|Faculty of Nuclear Sciences and Physical Engineering|Czech Technical University
Цитировать
Поделиться

Другие записи