We consider problems of linear copositive programming where feasible sets consist of vectors for which the quadratic forms induced by the corresponding linear matrix combinations are nonnegative over the nonnegative orthant. Given a linear copositive problem, we define immobile indices of its constraints and a normalized immobile index set. We prove that the normalized immobile index set is either empty or can be represented as a union of a finite number of convex closed bounded polyhedra. We show that the study of the structure of this set and the connected properties of the feasible set permits to obtain new optimality criteria for copositive problems. These criteria do not require the fulfillment of any additional conditions (constraint qualifications or other). An illustrative example shows that the optimality conditions formulated in the paper permit to detect the optimality of feasible solutions for which the known sufficient optimality conditions are not able to do this. We apply the approach based on the notion of immobile indices to obtain new formulations of regularized primal and dual problems which are explicit and guarantee strong duality. © 2020, Springer Nature B.V.