Initial-boundary value problems for multi-term time-fractional diffusion equations with x-dependent coefficients

In this paper, we discuss an initial-boundary value problem (IBVP) for the multi-term time-fractional diffusion equation with x-dependent coefficients. By means of the Mittag-Leffler functions and the eigenfunction expansion, we reduce the IBVP to an equivalent integral equation to show the unique existence and the analyticity of the solution for the equation. Especially, in the case where all the coefficients of the time-fractional derivatives are non-negative, by the Laplace and inversion Laplace transforms, it turns out that the decay rate of the solution for long time is dominated by the lowest order of the time-fractional derivatives. Finally, as an application of the analyticity of the solution, the uniqueness of an inverse problem in determining the fractional orders in the multi-term time-fractional diffusion equations from one interior point observation is established. © 2020, American Institute of Mathematical Sciences. All rights reserved.

Авторы
Li Z.1 , Huang X.2 , Yamamoto M. 2, 3, 4
Издательство
American Institute of Mathematical Sciences
Номер выпуска
1
Язык
Английский
Страницы
153-179
Статус
Опубликовано
Том
9
Год
2020
Организации
  • 1 School of Mathematics and Statistics, Shandong University of Technology Zibo, Shandong, 255049, China
  • 2 Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8914, Japan
  • 3 Honorary Member of Academy of Romanian Scientists, Splaiul Independentei Street, no 54, Bucharest, 050094, Romania
  • 4 Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
Ключевые слова
Analyticity; Asymptotic behavior; Initial-boundary value problem; Inverse problem; Time-fractional diffusion equation
Цитировать
Поделиться

Другие записи