Solvability problems for a linear homogeneous functional-differential equation of the pointwise type

The Cauchy problem for a linear homogeneous functional-differential equation of the pointwise type defined on a straight line is considered. Theorems on the existence and uniqueness of the solution in the class of functions with a given growth are formulated for the case of the one-dimensional equation. The study is performed using the group peculiarities of these equations and is based on the description of spectral properties of an operator that is induced by the right-hand side of the equation and acts in the scale of spaces of infinite sequences. © 2017, Pleiades Publishing, Ltd.

Авторы
Beklaryan L.A. 1, 2 , Beklaryan A.L.3
Журнал
Номер выпуска
2
Язык
Английский
Страницы
145-156
Статус
Опубликовано
Том
53
Год
2017
Организации
  • 1 Central Economics and Mathematics Institute, Russian Academy of Sciences, Moscow, 117418, Russian Federation
  • 2 Peoples Friendship University of Russia, Moscow, 117198, Russian Federation
  • 3 National Research University “Higher School of Economics”, Moscow, 101978, Russian Federation
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/5639/
Поделиться

Другие записи