On a Trace Formula for Functions of Noncommuting Operators

The main result of the paper is that the Lifshits-Krein trace formula cannot be generalized to the case of functions of noncommuting self-adjoint operators. To prove this, we show that, for pairs (A1, B1) and (A2, B2) of bounded self-adjoint operators with trace class differences A2-A1 and B2-B1, it is impossible to estimate the modulus of the trace of the difference f (A2, B2) - f (A1, B1) in terms of the norm of f in the Lipschitz class. © 2019, Pleiades Publishing, Ltd.

Авторы
Aleksandrov A.B.1 , Peller V.V. 2, 3 , Potapov D.S.4
Журнал
Номер выпуска
3-4
Язык
Английский
Страницы
481-487
Статус
Опубликовано
Том
106
Год
2019
Организации
  • 1 St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, 191023, Russian Federation
  • 2 Department of Mathematics, Michigan State University, East Lansing, MI 48824, United States
  • 3 RUDN University, Moscow, 117198, Russian Federation
  • 4 School of Mathematics and Statistics, University of New South Wales, Kensington, NSW 2052, Australia
Ключевые слова
Lifshits-Krein trace formula; operators Lipschitz functions; trace; trace class operators
Цитировать
Поделиться

Другие записи