Modification of U-Net neural network in the task of multichannel satellite images segmentation

Results of training of convolutional neural network for satellite four-channel image segmentation are performed. Input images contain blue, green, red and near-infrared channels. The algorithm was trained to detect buildings and other urban areas. Modification of the U-Net neural network with two encoders was used. The values of Sorensen coefficient and Jaccard index were calculated for 16 different urban regions. © 2019 IEEE.

Авторы
Khryashchev V.1 , Larionov R.1 , Ostrovskaya A. 2 , Semenov A. 2
Сборник материалов конференции
Издательство
Institute of Electrical and Electronics Engineers Inc.
Язык
Английский
Статус
Опубликовано
Номер
8884452
Год
2019
Организации
  • 1 P.G. Demidov Yaroslavl State University, Yaroslavl, Russian Federation
  • 2 People's Friendship University of Russia, Moscow, Russian Federation
Ключевые слова
convolutional neural network; deep learning; image segmentation; satellite images
Цитировать
Поделиться

Другие записи