Fitting Sugeno integral for learning fuzzy measures using PAVA isotone regression

The discrete Sugeno integral is an aggregation function particularly suited to aggregation of ordinal inputs. It accounts for inputs interactions, such as redundancy and complementarity, and its learning from empirical data is a challenging optimisation problem. The methods of ordinal regression involve an expensive objective function, whose complexity is quadratic in the number of data. We formulate ordinal regression using a much less expensive objective computed in linear time by the pool-adjacent-violators algorithm. We investigate the learning problem numerically and show the superiority of the new algorithm. © 2019 Wiley Periodicals, Inc.

Авторы
Издательство
John Wiley and Sons Ltd
Номер выпуска
11
Язык
Английский
Страницы
2863-2871
Статус
Опубликовано
Том
34
Год
2019
Организации
  • 1 School of Information Technology, Deakin University, Geelong, Australia
  • 2 Department of Applied Probability and Informatics, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russian Federation
Ключевые слова
aggregation functions; capacities; fuzzy measures; Sugeno integral
Дата создания
24.12.2019
Дата изменения
24.12.2019
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/54922/
Поделиться

Другие записи

Boginsky A.I., Chursin A.A.
Russian Engineering Research. Том 39. 2019. С. 940-943