Рассматривается многомерная модель скалярно-тензорной гравитации с сигма-модельным действием для скалярного сектора. Гравитационная модель определена на многообразии, которое содержит n фактор-пространств Эйнштейна. Получены общие решения космологического типа для полевых уравнений, когда все фактор-пространства, за исключением одного, риччи-плоские. Решения определены с точностью до решения уравнений геодезических на пространстве мишеней. В случае, когда все фактор-пространства риччи-плоские, выделен подкласс несингулярных решений.
A multidimensional model of gravity with a sigma-model action for scalar fields is considered. The gravitational model is defined on the manifold, which contains n Einstein factor spaces. General cosmological-type solutions to the field equations are obtained when n−1 factor-spaces are Ricci-flat. The solutions are defined up to solutions of geodesic equations corresponding to a sigma-model target space. Several examples of sigma-models are considered. A subclass of non-singular solutions is singled-out for the case when all factor-spaces are Ricci-flat.