С помощью метода унитарных преобразований исследованы сингулярно возмущённые квазилинейных системы обыкновенных дифференциальных уравнений на полуоси с нелинейной нормальной матрицей, что в некоторых случаях может привести к появлениям счётного числа дополнительных пограничных слоев. Для таких систем наибольшие проблемы возникают при исследовании устойчивости их решения особенно в критических случаях, когда спектр определяющей матрицы лежит (или касается) мнимой оси. Предложенный метод позволяет проводить исследования традиционного аппарата функций Ляпунова. Приведены достаточные условия устойчивости (и асимптотической устойчивости) и оценки нормы решения таких задач, что уточняет или дополняет известные ранее результаты. Рассмотрены нетривиальные примеры сингулярно возмущённых нелинейных задач для квазилинейных систем обыкновенных дифференциальных уравнений с нелинейной нормальной матрицей.
Using the method of unitary transformation, the singularly perturbed quasi-linear systems of ordinary differential equations with nonlinear normal matrices on the semiaxis were studied, which in some cases can lead to the existence of countable number of additional boundary layers. For such system, most problems arise in the study of the stability of their solution especially in critical cases where the spectrum defined by the matrix lies (or touches) the imaginary axis. The proposed method allows us to study the traditional Lyapunov functions. We have shown sufficient conditions for stability (and asymptotic stability) and given the evaluation of the norm of the solution for such problems, which clarifies or supplements previously known results. In addition in the paper we have included some non-trivial examples of nonlinear singularly perturbed problems for quasi-linear systems of ordinary differential equations with nonlinear normal matrices.