Matrix KSGNS construction and a Radon–Nikodym type theorem

In this paper, we introduce the concept of completely positive matrix of linear maps on Hilbert A-modules over locally C∗-algebras and prove an analogue of Stinespring theorem for it. We show that any two minimal Stinespring representations for such matrices are unitarily equivalent. Finally, we prove an analogue of the Radon–Nikodym theorem for this type of completely positive n×n matrices. © 2017 Royal Dutch Mathematical Society (KWG)

Авторы
Moslehian M.S.1 , Kusraev A.2 , Pliev M. 2, 3
Издательство
Elsevier B.V.
Номер выпуска
5
Язык
Английский
Страницы
938-952
Статус
Опубликовано
Том
28
Год
2017
Организации
  • 1 Department of Pure Mathematics, Center Of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad, 91775, Iran
  • 2 Southern Mathematical Institute of the Russian Academy of Sciences, str. Markusa 22, Vladikavkaz, 362027, Russian Federation
  • 3 RUDN University, 6 Miklukho-Maklaya st, Moscow, 117198, Russian Federation
Ключевые слова
Commutant; Completely n-positive map; Hilbert A-module; Locally C∗-algebra; Stinespring construction
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/5289/
Поделиться

Другие записи