Weighted inequalities for Hardy-type operators on the cone of decreasing functions in an Orlicz space

We establish criteria for the validity of modular inequalities for the Hardy operator on the cone Ω of nonnegative decreasing functions from weighted Orlicz spaces with general weight. The result is based on the theorem on the reduction of modular inequalities for positively homogeneous operators on the cone Ω, which enables passing to modular inequalities for modified operators on the cone of all nonnegative functions from an Orlicz space. It is shown that, for the Hardy operator, the modified operator is a generalized Hardy operator. This enables us to establish explicit criteria for the validity of modular inequalities. © 2017, Pleiades Publishing, Ltd.

Авторы
Журнал
Номер выпуска
5-6
Язык
Английский
Страницы
623-631
Статус
Опубликовано
Том
102
Год
2017
Организации
  • 1 Peoples’ Friendship University of Russia, Moscow, Russian Federation
Ключевые слова
cone of decreasing functions; generalized Hardy operator; Hardy operator; modular inequality; weighted Orlicz space
Дата создания
19.10.2018
Дата изменения
17.03.2021
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/5205/
Поделиться

Другие записи