On the Toroidal Surfaces of Revolution with Constant Mean Curvatures

It is shown that the surface with a constant mean curvature encloses the extremal volume among all toroidal surfaces of given area. The exact solution for the corresponding variational problem is derived, and its parametric analysis is performed in the limits of high and small mean curvatures. An absence of smooth torus with constant mean curvature is proved, and the extremal surface is demonstrated to have at least one edge located on the outer side of the torus. © 2017, Pleiades Publishing, Ltd.

Авторы
Ilgisonis V.I. 1, 2, 3 , Skovoroda A.A.1 , Sorokina E.A. 1, 2, 3
Номер выпуска
7
Язык
Английский
Страницы
1307-1312
Статус
Опубликовано
Том
80
Год
2017
Организации
  • 1 National Research Center Kurchatov Institute, Moscow, Russian Federation
  • 2 Peoples’ Friendship University of Russia (RUDN University), Moscow, Russian Federation
  • 3 National Research Nuclear University MEPhI, Moscow, Russian Federation
Ключевые слова
surfaces with constant mean curvature; tokamak; tori
Дата создания
19.10.2018
Дата изменения
06.09.2021
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/5153/
Поделиться

Другие записи