The motion of a relativistic charged particle in the presence of the field of high-power laser radiation represented in the form of a Gaussian beam of arbitrary mode is analyzed. The vector potential of the radiation field is expanded in terms of a small parameter (the ratio of the wavelength to the Gaussian beam waist). A specific feature of averaging with respect to the phases of the high-mode Gaussian beams is demonstrated. The averaged equations for the motion of particle and a general expression for the ponderomotive relativistic force for the circularly polarized radiation are derived. It is demonstrated that relativistic effects suppress the averaged action of high-power laser radiation on the particle. © 2014, Pleiades Publishing, Ltd.