Variational Genetic Programming for Optimal Control System Synthesis of Mobile Robots

The paper focuses on the problem of autonomous control system synthesis for the mobile robot. The proposed numerical solution is based on a new method of symbolic regression called variational genetic programming. This method uses the principle of variations of the basic solution. An optimal solution is searched over the set of small variations of the given basic solution. Such approach allows to generate automatically a control function that describes the feedback controller. In the given example the control system is synthesized using variational genetic programming for the unmanned mobile robot that has to move to some terminal position from the different initial states avoiding obstacles. © 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Авторы
Diveev A.I. 1 , Ibadulla S.I. 2 , Konyrbaev N.B. 2 , Shmalko E.Y.1
Журнал
Издательство
Elsevier B.V.
Номер выпуска
19
Язык
Английский
Страницы
106-111
Статус
Опубликовано
Том
48
Год
2015
Организации
  • 1 Institution of Russian Academy, Sciences Dorodnicyn Computing Centre of RAS, Russian Federation
  • 2 Peoples' Friendship University of Russia, Kazakhstan
Ключевые слова
learning robot control; mobile robots and vehicles; robust robot control
Дата создания
19.10.2018
Дата изменения
10.03.2022
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/4725/
Поделиться

Другие записи