On the nonexistence of solutions of some anisotropic elliptic and backward parabolic inequalities

We study the nonexistence of weak solutions of higher-order elliptic and parabolic inequalities of the following types: (Formula presented.), where li, mi, ki, ni ∈ N satisfy the condition li, ki > 1 for all i = 1,.., N, and Aαi(x, u), Bβi(x, t, u), f(x, u), and g(x, t, u) are some given Carathéodory functions. Under appropriate conditions on the functions Aαi, Bβi, f, and g, we prove theorems on the nonexistence of solutions of these inequalities. © 2015, Pleiades Publishing, Ltd.

Авторы
Журнал
Номер выпуска
12
Язык
Английский
Страницы
1607-1619
Статус
Опубликовано
Том
51
Год
2015
Организации
  • 1 Peoples’ Friendship University of Russia, Moscow, Russian Federation
Цитировать
Поделиться

Другие записи