Unbounded random operators and Feynman formulae

We introduce and study probabilistic interpolations of various quantization methods. To do this, we develop a method for finding the expectations of unbounded random operators on a Hilbert space by averaging (with the help of Feynman formulae) the random one-parameter semigroups generated by these operators (the usual method for finding the expectations of bounded random operators is generally inapplicable to unbounded ones). Although the averaging of families of semigroups generates a function that need not possess the semigroup property, the Chernoff iterates of this function approximate a certain semigroup, whose generator is taken for the expectation of the original random operator. In the case of bounded random operators, this expectation coincides with the ordinary one. © 2016 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.

Авторы
Orlov Yu.N.1 , Sakbaev V.Zh. 2 , Smolyanov O.G.3
Журнал
Издательство
Institute of Physics Publishing
Номер выпуска
6
Язык
Английский
Страницы
1131-1158
Статус
Опубликовано
Том
80
Год
2016
Организации
  • 1 Keldysh Institute of Applied Mathematics, RAS, Moscow, Russian Federation
  • 2 Moscow Institute of Physics and Thechnology (State University), Dolgoprudnyi, Moscow Region, Russian University of People Friendship, Moscow, Russian Federation
  • 3 Moscow State University, Russian Federation
Ключевые слова
Chernoff equivalence; Chernoff's formula; Feynman formula; Hamiltonian function; Hamiltonian operator; One-parameter semigroup; Probabilistic interpolation; Quantization; Random operator; Randomization
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/4424/
Поделиться

Другие записи