Stability for semilinear parabolic problems in L2 and W1,2

Asymptotic stability is studied for semilinear parabolic problems in L2(Ω) and interpolation spaces. Some known results about stability inW1,2(Ω) are improved for semilinear parabolic systems with mixed boundary conditions. The approach is based on Amann's power extrapolation scales. In the Hilbert space setting, a better understanding of this approach is provided for operators satisfying Kato's square root problem. © European Mathematical Society.

Авторы
Gurevich P. 1, 2 , Väth M.3
Издательство
Heldermann Verlag
Номер выпуска
3
Язык
Английский
Страницы
333-357
Статус
Опубликовано
Том
35
Год
2016
Организации
  • 1 Free University of Berlin, Arnimallee 3, Berlin, 14195, Germany
  • 2 Peoples' Friendship University of Russia, Miklukho-Maklaya 6, Moscow, 117198, Russian Federation
  • 3 Institute of Mathematics of the Czech Academy of Sciences, Žitná 25, Prague 1, 115 67, Czech Republic
Ключевые слова
Asymptotic stability; Existence; Fractional power; Kato's square root problem; Parabolic PDE; Sesquilinear form; Strongly accretive operator; Uniqueness
Цитировать
Поделиться

Другие записи