On the solvability of parabolic functional differential equations in banach spaces

In this paper, a parabolic functional differential equation is considered in the spaces C(0; T;H1 p (Q)) for p close to 2. The transformations of the space argument are supposed to be multiplicators of the Sobolev spaces with a small smoothness exponent. The machinery of the investigation is based on the semigroup theory. In particular, it is proved that the elliptic part of the operator is a generator of a strongly continuous semigroup. © The Eurasian National University.

Авторы
Издательство
Eurasian Mathematical Journal
Номер выпуска
4
Язык
Английский
Страницы
85-91
Статус
Опубликовано
Том
7
Год
2016
Организации
  • 1 Dorodnicyn Computing Center of the Russian Academy of Sciences, 40 Vavilova St, Moscow, 119333, Russian Federation
  • 2 Peoples Friendship Uniersity of Russia (RUDN University), 6 Miklukho-Maklay St, Moscow, 117198, Russian Federation
Ключевые слова
Banach spaces; Functional differential equations; Lipschitz domain
Цитировать
Поделиться

Другие записи