A version of the infinite-dimensional Borsuk-Ulam theorem for multivalued maps

This paper is devoted to the proof of the infinite-dimensional Borsuk-Ulam theorem for odd completely continuous multivalued maps with convex images which are defined on level sets of even functions. The results obtained in the paper are new even for single-valued maps. In the final section some applications of the theorem to analysis and differential equations are discussed. © 2016 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.

Авторы
Журнал
Издательство
Russian Academy of Sciences
Номер выпуска
6
Язык
Английский
Страницы
841-853
Статус
Опубликовано
Том
207
Год
2016
Организации
  • 1 Voronezh State University, Russian University of Peoples' Friendship, Moscow, Russian Federation
Ключевые слова
Borsuk-Ulam theorem; Level set of a function; Multivalued map; Surjective operator; Topological dimension
Цитировать
Поделиться

Другие записи

Sochenkov I., Zubarev D., Tikhomirov I., Smirnov I., Shelmanov A., Suvorov R., Osipov G.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Том 9626. 2016. С. 837-840