Coincidence points principle for set-valued mappings in partially ordered spaces

In the paper the concept of covering (regularity) for set-valued mappings in partially ordered spaces is introduced. The coincidence points problem for set-valued mappings in partially ordered spaces is considered. Sufficient conditions for the existence of coincidence points of isotone and orderly covering set-valued mappings are obtained. It is shown that the known theorems on coincidence points of covering and Lipschitz mappings in metric spaces can be deduced from the obtained results. © 2015 Published by Elsevier B.V.

Авторы
Язык
Английский
Страницы
330-343
Статус
Опубликовано
Том
201
Год
2016
Организации
  • 1 Peoples' Friendship University of Russia, M.-Maklaya str., 6, Moscow, 117198, Russian Federation
  • 2 Moscow State University, Department of Computational Mathematics and Cybernetics, Leninskiye Gori 1-52, Moscow, 119234, Russian Federation
  • 3 Tambov State University, Internatsionalnaya str., 33, Tambov, 392000, Russian Federation
Ключевые слова
Coincidence point; Orderly covering mapping
Цитировать
Поделиться

Другие записи

Hulet C., Rochcongar G., Tardieu C., Dunet J., Chapus V., Korolev A., De Chou E.S.
Surgery of the Meniscus. Springer Berlin Heidelberg. 2016. С. 3-14