On admissible changes of variables for Sobolev functions on (sub)Riemannian manifolds

We give a description of metric properties of measurable mappings of domains on Riemannian manifolds inducing isomorphisms of Sobolev spaces by the composition rule. We prove that any such mapping can be redefined on a set of measure zero to be quasi-isometric, when the exponent of summability is different from the dimension of a Riemannian manifold or to coincide with a quasi-conformal mapping otherwise. © 2016, Pleiades Publishing, Ltd.

Авторы
Vodopyanov S.K. 1, 2, 3
Журнал
Номер выпуска
3
Язык
Английский
Страницы
318-321
Статус
Опубликовано
Том
93
Год
2016
Организации
  • 1 Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Koptyuga 4, Novosibirsk, 630090, Russian Federation
  • 2 Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russian Federation
  • 3 Peoples’ Friendship University of Russia, ul. Miklukho-Maklaya 6, Moscow, 117198, Russian Federation
Цитировать
Поделиться

Другие записи