Asymptotics of the heat kernels on 2D lattices

We obtain asymptotic expansions of the spatially discrete 2D heat kernels, or Green's functions on lattices, with respect to powers of time variable up to an arbitrary order and estimate the remainders uniformly on the whole lattice. Unlike in the 1D case, the asymptotics contains a time independent term. The derivation of its spatial asymptotics is the technical core of the paper. Besides numerical applications, the obtained results play a crucial role in the analysis of spatio-temporal patterns for reaction-diffusion equations on lattices, in particular rattling patterns for hysteretic diffusion systems. © 2019 IOS Press and the authors. All rights reserved.

Авторы
Журнал
Издательство
IOS Press
Номер выпуска
1-2
Язык
Английский
Страницы
107-124
Статус
Опубликовано
Том
112
Год
2019
Организации
  • 1 Free University of Berlin, Germany
  • 2 Peoples' Friendship University of Russia, Russian Federation
Ключевые слова
asymptotics; Discrete heat kernel; Green's function; lattice dynamics
Дата создания
19.07.2019
Дата изменения
19.07.2019
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/39055/
Поделиться

Другие записи

Bobylev A.A., Rachina S.A., Avdeev S.N., Kozlov R.S., Mladov V.V.
КАРДИОЛОГИЯ. KlinMed Consulting. Том 59. 2019. С. 40-46