Completion of the classification of generic singularities of geodesic flows in two classes of metrics

This is the final paper in a series devoted to generic singularities of geodesic flows for two-dimensional pseudo-Riemannian metrics of changing signature and metrics induced from the Euclidean metric of the ambient space on surfaces with a cuspidal edge. We study the local phase portraits and the properties of geodesics at degenerate points of a certain type. This completes the list of singularities in codimensions 1 and 2. © 2019 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.

Авторы
Pavlova N.G. 1 , Remizov A.O.2, 3
Журнал
Издательство
Institute of Physics Publishing
Номер выпуска
1
Язык
Английский
Страницы
104-123
Статус
Опубликовано
Том
83
Год
2019
Организации
  • 1 Peoples' Friendship University of Russia, Moscow Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow Region, Russian Federation
  • 2 Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow Region, Russian Federation
  • 3 CMAP École Polytechnique, Palaiseau, France
Ключевые слова
geodesic; invariant manifold; normal form; pseudo-Riemannian metric; singular point
Дата создания
19.07.2019
Дата изменения
19.07.2019
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/39011/
Поделиться

Другие записи