Global minimum depth in edwards-anderson model

In the literature the most frequently cited data are quite contradictory, and there is no consensus on the global minimum value of 2D Edwards-Anderson (2D EA) Ising model. By means of computer simulations, with the help of exact polynomial Schraudolph-Kamenetsky algorithm, we examined the global minimum depth in 2D EA-type models. We found a dependence of the global minimum depth on the dimension of the problem N and obtained its asymptotic value in the limit N → ∞. We believe these evaluations can be further used for examining the behavior of 2D Bayesian models often used in machine learning and image processing. © Springer Nature Switzerland AG 2019.

Авторы
Karandashev I. 1, 2 , Kryzhanovsky B.1
Издательство
Springer Verlag
Язык
Английский
Страницы
391-398
Статус
Опубликовано
Том
1000
Год
2019
Организации
  • 1 Center of Optical Neural Technologies, Scientific Research Institute for System Analysis RAS, Nakhimovskiy prosp., 36, b.1., Moscow, 117218, Russian Federation
  • 2 Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
Ключевые слова
Edwards-Anderson model; Exact polynomial algorithm; Global minimum; Local minimum; Minimization; Planar Ising model; Spectrum; Spin glass system; Spin system
Цитировать
Поделиться

Другие записи

Khodzhibekov R.R., Khokhlova O.N., Reizis A.R., Kozhevnikova G.M.
Jurnal Infektologii. Interregional public organization Association of infectious disease specialists of Saint-Petersburg and Leningrad region (IPO AIDSSPbR). Том 11. 2019. С. 14-19