Variational principles in analysis and existence of minimizers for functions on metric spaces

Functions defined on metric spaces are studied. For these functions, a generalized Caristi-like condition is introduced. It is shown that this condition is sufficient for a bounded below, lower semicontinuous function to attain its minimum. Criteria for a generalized Caristi-like condition to hold are derived. Generalizations of the Ekeland and Bishop-Phelps variational principles are obtained and compared with their prototypes. © 2019 Society for Industrial and Applied Mathematics Publications. All rights reserved.

Авторы
Номер выпуска
2
Язык
Английский
Страницы
994-1016
Статус
Опубликовано
Том
29
Год
2019
Организации
  • 1 Peoples' Friendship University of Russia, RUDN University, Moscow, 117198, Russian Federation
  • 2 Trapeznikov Institute of Control Sciences of RAS, Moscow, 117997, Russian Federation
  • 3 Institute for Information Transmission Problems of RAS, Moscow, 127051, Russian Federation
  • 4 Department of Higher Mathematics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russian Federation
Ключевые слова
Bishop-Phelps variational principle; Ekeland variational principle; Existence of minima of functions on metric spaces
Цитировать
Поделиться

Другие записи

Kaae S., Ghazaryan L., Pagava K., Korinteli I., Makalkina L., Zhetimkarinova G., Ikhambayeva A., Tentiuc E., Ratchina S., Zakharenkova P., Yusufi S., Maqsudova N., Druedahl L., Sporrong S.K., Cantarero L.A., Nørgaard L.S.
Research in Social and Administrative Pharmacy. Elsevier Inc.. 2019.