A remark on the continuity of the measure Lagrange multiplier in state constrained optimal control problems

The article is focused on the necessary optimality condition in the form of Pontryagin's maximum principle for state constrained problems. A certain refinement to these conditions is made. More specifically, it has been noted that the measure-multiplier from the maximum principle is continuous under the regularity conditions imposed in [1]. The continuity of the measure-multiplier appears to be highly relevant for numerical implementations in the framework of indirect computational approach. © 2018 IEEE.

Авторы
Сборник материалов конференции
Язык
Английский
Страницы
49-54
Статус
Опубликовано
Номер
8618903
Том
2018-December
Год
2019
Организации
  • 1 Aram Arutyunov is with RUDN University, Moscow Institute of Physics and Technology, Institute for Information Transmission Problems, Moscow, Russian Federation
  • 2 SYSTEC/Faculdade de Engenharia (Visiting Researcher), Universidade Do Porto, Federal Research Center 'Computer Science and Control' of the Russian Academy of Sciences, Vavilova street, 44, Moscow, 119333, Russian Federation
  • 3 SYSTEC/Faculdade de Engenharia, Universidade Do Porto, Rua Dr. Roberto Frias, s/n, Porto, 4200-465, Portugal
Ключевые слова
Maximum principle; Optimal control systems; Computational approach; Constrained optimal control problems; Necessary optimality condition; Numerical implementation; Pontryagin's maximum principle; Regularity condition; State constrained problems; Lagrange multipliers
Цитировать
Поделиться

Другие записи