Soil Biology and Biochemistry.
Elsevier Ltd.
Том 134.
2019.
С. 187-196
The paper deals with nonlinear Schrödinger equations on infinite metric graphs. We assume that the linear potential is infinitely growing. We prove an existence and multiplicity result that covers both self-focusing and defocusing cases. Furthermore, under some additional assumptions we show that solutions obtained bifurcate from trivial ones. We prove that these solutions are superexponentially localized. Our approach is variational and based on generalized Nehari manifold. © 2019 Elsevier Ltd