On Zipf-Mandelbrot entropy and 3-convex functions

In this paper, we present some interesting results related to the bounds of Zipf-Mandelbrot entropy and the 3-convexity of the function. Further, we define linear functionals as the nonnegative differences of the obtained inequalities and we present mean value theorems for the linear functionals. Finally, we discuss the n-exponential convexity and the log-convexity of the functions associated with the linear functionals. © 2019 by the Tusi Mathematical Research Group.

Авторы
Khalid S.1 , Pečarić D.2 , Pečarić J. 3
Издательство
Tusi Mathematical Research Group (TMRG)
Номер выпуска
4
Язык
Английский
Страницы
724-737
Статус
Опубликовано
Том
4
Год
2019
Организации
  • 1 Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Pakistan
  • 2 Catholic University of Croatia, Ilica 242, Zagreb, 10000, Croatia
  • 3 Rudn University, Miklukho-Maklaya str., Moscow, 6117198, Russian Federation
Ключевые слова
Divided difference; Logarithmic convexity; N- convex function; N-exponential convexity; Shannon entropy; Zipf-Mandelbrot entropy
Дата создания
19.07.2019
Дата изменения
19.07.2019
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/38542/
Поделиться

Другие записи