Some Properties and Applications of the Hausdorff Distance

Some properties of Hausdorff distance are studied. It is shown that, in every infinite-dimensional normed space, there exists a pair of closed and bounded sets such that the distance between every two points of these sets is greater than the Hausdorff distance between these sets. A relation of the obtained result to set-valued analysis is discussed. © 2015, Springer Science+Business Media New York.

Авторы
Arutyunov A.V. 1 , Vartapetov S.A.2 , Zhukovskiy S.E. 1
Издательство
Kluwer Academic Publishers-Plenum Publishers
Номер выпуска
2
Язык
Английский
Страницы
527-535
Статус
Опубликовано
Том
171
Год
2016
Организации
  • 1 Peoples’ Friendship University of Russia, Miklukho-Maklaya Str., 6, Moscow, 117198, Russian Federation
  • 2 Faculty of Computational Mathematics and Cybernetics, Moscow State University, GSP-1, 1-52, Leninskiye Gory, Moscow, 119991, Russian Federation
Ключевые слова
Hausdorff metric; Lipschitz continuity; Orthogonality in a normed space
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/3755/
Поделиться

Другие записи