Weighted Norm Inequalities for Integral Transforms

Weighted (L-p,L-q) inequalities are studied for a variety of integral transforms of Fourier type. In particular, weighted norm inequalities for the Fourier, Hankel, and Jacobi transforms are derived from Calderon-type rearrangement estimates. The obtained results keep their novelty even in the simplest cases of the studied transforms, the cosine and sine Fourier transforms. Sharpness of the conditions on weights is discussed.

Авторы
Gorbachev D.1 , Liflyand E. 2, 3 , Tikhonov S.4, 5
Издательство
INDIANA UNIV MATH JOURNAL
Номер выпуска
5
Язык
Английский
Страницы
1949-2003
Статус
Опубликовано
Том
67
Год
2018
Организации
  • 1 Tula State Univ, Dept Appl Math & Comp Sci, Tula 300012, Russia
  • 2 Bar Ilan Univ, Dept Math, IL-52900 Ramat Gan, Israel
  • 3 RUDN Univ, SM Nikolskii Inst Math, 6 Miklukho Maklay St, Moscow 117198, Russia
  • 4 Ctr Recerca Matemat, Campus Bellaterra,Edifici C, Bellaterra 08193, Barcelona, Spain
  • 5 ICREA, Pg Llus Co 23, Barcelona 08010, Spain
Ключевые слова
Pitt's inequality; Calderon's inequalities; Fourier; Hankel; Jacobi; Mehler-Fock transforms
Цитировать
Поделиться

Другие записи