Numerical solution of the nonlocal boundary value problem for elliptic equations

In the present paper a second order of accuracy two-step difference scheme for an approximate solution of the nonlocal boundary value problem for the elliptic differential equation -v ''(t) + Av(t) = f(t) (0 <= t <= T); v(0) = v(T) + phi, integral(T)(0) v(s)ds = psi in an arbitrary Banach space E with the strongly positive operator A is presented. The stability of this difference scheme is established. In application, the stability estimates for the solution of the difference scheme for the elliptic differential problem with the Neumann boundary condition are obtained. Additionally, the illustrative numerical result is provided.

Авторы
Ashyralyev A. 1, 2, 3 , Hamad A.3, 4
Издательство
KARAGANDA STATE UNIV
Номер выпуска
3
Язык
Английский
Страницы
99-107
Статус
Опубликовано
Том
91
Год
2018
Организации
  • 1 Near East Univ, Nicosia, Turkey
  • 2 Peoples Friendship Univ Russia, Moscow, Russia
  • 3 Inst Math & Math Modeling, Alma Ata, Kazakhstan
  • 4 Omar Al Mukhtar Univ, El Beida, Turkey
Ключевые слова
stability; positive operators; elliptic equation; numerical results; two-step difference scheme
Дата создания
04.02.2019
Дата изменения
04.02.2019
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/36658/
Поделиться

Другие записи