Spectral Theory of Infinite Quantum Graphs

We investigate quantum graphs with infinitely many vertices and edges without the common restriction on the geometry of the underlying metric graph that there is a positive lower bound on the lengths of its edges. Our central result is a close connection between spectral properties of a quantum graph and the corresponding properties of a certain weighted discrete Laplacian on the underlying discrete graph. Using this connection together with spectral theory of (unbounded) discrete Laplacians on infinite graphs, we prove a number of new results on spectral properties of quantum graphs. Namely, we prove several self-adjointness results including a Gaffney-type theorem. We investigate the problem of lower semiboundedness, prove several spectral estimates (bounds for the bottom of spectra and essential spectra of quantum graphs, CLR-type estimates) and study spectral types. © 2018, The Author(s).

Авторы
Exner P.1, 2 , Kostenko A. 3, 4 , Malamud M. 5 , Neidhardt H.6
Журнал
Издательство
Birkhauser Verlag AG
Номер выпуска
11
Язык
Английский
Страницы
3457-3510
Статус
Опубликовано
Том
19
Год
2018
Организации
  • 1 Doppler Institute for Mathematical Physics and Applied Mathematics, Czech Technical University, Břehová 7, Prague, 11519, Czech Republic
  • 2 Department of Theoretical Physics Nuclear Physics Institute, Czech Academy of Sciences, Řež, Prague, 25068, Czech Republic
  • 3 Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 21, Ljubljana, 1000, Slovenia
  • 4 Faculty of Mathematics, University of Vienna, Oskar–Morgenstern–Platz 1, Vienna, 1090, Austria
  • 5 Peoples Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, Moscow, 117198, Russian Federation
  • 6 Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, Berlin, 10117, Germany
Цитировать
Поделиться

Другие записи

Arutyunyan I.V., Strokova S.О., Makarov А.V., Mullabaeva S.М., Elchaninov А.V., Lokhonina А.V., Abramov А.А., Fatkhudinov Т.K.
Бюллетень экспериментальной биологии и медицины Клеточные технологии в биологии и медицине. New York Consultants BureauSpringer / Автономная некоммерческая организация Издательство Российской академии медицинских наук. Том 166. 2018. С. 155-162