Covering of nonlinear maps on a cone in neighborhoods of irregular points

Inverse function theorems for smooth nonlinear maps defined on convex cones in Banach spaces in a neighborhood of an irregular point are considered. The corresponding covering theorem is proved. The proofs are based on a Banach open mapping theorem for convex cones in Banach spaces, which is also proved in the paper. Sufficient conditions for tangency to the zero set of a nonlinear map without a priori regularity assumptions are obtained. © 2005 Springer Science+Business Media, Inc.

Авторы
Журнал
Номер выпуска
3-4
Язык
Английский
Страницы
447-460
Статус
Опубликовано
Том
77
Год
2005
Организации
  • 1 Peoples' Friendship Univ. of Russia, Moscow, Russian Federation
Ключевые слова
Γ-covering map; Banach open mapping theorem; Covering theorem for a cone; Implicit function theorem; Linearly covering map; Robinson regularity condition
Цитировать
Поделиться

Другие записи